Synthelis .

Ion Channel

VDAC1 – Voltage-Dependent Anion Channel 1

Product specification

Acronym: VDAC-1 **Origin species:** Human **Protein reference :** P21796 (UniProtKB) L06132.1 (GenBank) Family: Anion channel

Expression system: E.coli based CFPS Format: Proteoliposomes Protein sequence: Met1 - Ala283 Tag: 6xHis tag (N-ter) **Cleavage site:** Factor Xa Product MW: 30.7kDa

PL029

Protein Catalog

Application: Drug screening & discovery, antibody development, structural biology

Product description

VDAC-1 (Voltage-Dependent Anion Channel) is a mitochondrial porin located in the outer mitochondrial membrane (OMM). This protein consists of a transmembrane β -barrel with a N-terminal α -helix. VDAC is responsible for the exchange of adenine nucleotides, Ca²⁺ and other metabolites across the mitochondrial membrane. It also has binding sites for glycerol, hexokinase II, creatine kinase and Bcl-2 family members. VDAC plays a central role in the increase of mitochondrial membrane permeability as part of apoptosis.

Recombinant protein sequence

His tag – factor Xa cleavage site -MAVPPTYADLGKSARDVFTKGYGFGLIKLDLKTKSENGLEFTSSGSANTETTKVTGSLETKYRWTEYGLTFTEKWNTDNTLGTEIT VEDQLARGLKLTFDSSFSPNTGKKNAKIKTGYKREHINLGCDMDFDIAGPSIRGALVLGYEGWLAGYQMNFETAKSRVTQSNFAVG YKTDEFQLHTNVNDGTEFGGSIYQKVNKKLETAVNLAWTAGNSNTRFGIAAKYQIDPDACFSAKVNNSSLIGLGYTQTLKPGIKLT LSALLDGKNVNAGGHKLGLGLEFQA

Quality analysis

Purity: > 75 % as determined by Coomassie Blue stained SDS-Page. Liposomes are directly incorporated into the Cell-Free reaction, thus, some impurities from the *E.coli* lysate might be present in the proteoliposomes.

A negative control (proteoliposomes without the protein of interest) can be provided (useful for screening, immunization...).

The purity can be improved by protein expression in detergent and relipidation after purification step(s).

Purification procedure: VDAC proteoliposomes are purified on a sucrose gradient.

NB : *Migration of membrane proteins on SDS-PAGE can result in « gel shifting » due to the presence of hairpins (helix-loop-helix)*¹⁻³.

References :

1 – Rath A., et al., Detergent binding explains anomalous SD-PAGE migration of membrane proteins PNAS, 2009 Feb 10, vol. 106

2 – Rath A., et al., Acrylamide concentration determines the direction and magnitude of helical membrane protein gel shifts, PNAS, 2013 Sep 24, 110(39)

3 – Rath A., et al., Correction factors for membrane protein molecular weight readouts on sodium dodecyl sulfate-polyacrilamide gel electrophoresis, Anal. Biochem., 2013 Mar 1, 434(1)

Fig. 1: Identification of VDAC-1 in the proteoliposomes by Coomassie Blue stained SDS-PAGE.

Formulation

Buffer: Available in Hepes 50mM, pH 7.5, with cryoprotectants. Other buffers or customized formulation can be provided upon request.

Customized Hydrophobic matrix: Customized formulation with specific lipids like PEGylated or biotinylated lipids can be used upon request, as well as targeting molecules.

Storage/Stability: Store at +4°C for up to one week or several months at -80°C. Aliquot for storage. <u>Do not freeze-thaw after aliquoting.</u>

Use restrictions: For life science research use only.

Available sizes: 10 µg, 50 µg, 100 µg, customized quantity on request.

Need a specific amount, a quote or any additional information? Contact-us

T : +33 (0)4 76 54 95 35 **E**: <u>contact@synthelis.fr</u> **www.synthelis.com**